skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sullivan, Pamela"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Riverine silicon (Si) plays a vital role in governing primary production, water quality, and carbon cycling. Climate and land cover change have altered how dissolved Si (DSi) is processed on land, transported to rivers, and cycled through aquatic ecosystems. The Global Aggregation of Stream Silica (GlASS) database was constructed to assess changes in river Si concentrations and fluxes, their relationship to other nutrients (nitrogen (N) and phosphorus (P)), and to evaluate mechanisms driving the availability of Si. GlASS includes concentrations of DSi, dissolved inorganic N (NO3, NOx, and NH4), and dissolved inorganic P (as soluble reactive P or PO4-P) at daily to quarterly time steps from 1963 to 2024; daily discharge; and watershed characteristics for 421 rivers spanning eight climate zones. Original data sources are cited, data quality assurance workflows are public, and input files to a common load model are provided. GlASS offers critical data to address questions about patterns, controls, and trajectories of global river Si biogeochemistry and stoichiometry. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Water samples have been collected for chemical analysis at various locations in the HJ Andrews Experimental Forest, starting in 2022. The database includes grab samples gathered approximately weekly in selected streams and bulk precipitation collected at the PRIMET meteorological station. Samples were analyzed for cations (Si4+, Ca2+, Mg2+, K+, and Na+) and anions (Cl- and SO42-). 
    more » « less
  3. The geochemistry and strontium isotope data for Coal Creek Watershed, Colorado, consists of cation, anion, and 87Sr/87Sr isotope values from samples collected at 8 stream location along Coal Creek, samples from two groundwater springs within the watershed, and a shallow subsurface piezometer. All stream and spring samples were collected between June and October, 2021, and the shallow, near stream piezometer sample was collected in July of 2022. These data were collected to evaluate how groundwater contributions to Coal Creek originating from shallow vs deep flow paths respond seasonal drying. Understanding of groundwater-surface water interactions in montane systems in critical for the future of water availability in the Western US as groundwater contributions are expected to become more important for sustaining summer stream flows. This data package contains: (1) a csv of all cation samples; (2) a csv of all anion samples; (3) a csv of all 87Sr/87Sr isotope samples; and (4) a csv of locations for each sampling site. The dataset additionally includes a file-level metadata (flmd.csv) file that lists each file contained in the dataset with associated metadata; and a data dictionary (dd.csv) file that contains column/row headers used throughout the files along with a definition, units, and data type. 
    more » « less
  4. ABSTRACT Hydrologic connectivity is defined as the connection among stores of water within a watershed and controls the flux of water and solutes from the subsurface to the stream. Hydrologic connectivity is difficult to quantify because it is goverened by heterogeniety in subsurface storage and permeability and responds to seasonal changes in precipitation inputs and subsurface moisture conditions. How interannual climate variability impacts hydrologic connectivity, and thus stream flow generation and chemistry, remains unclear. Using a rare, four‐year synoptic stream chemistry dataset, we evaluated shifts in stream chemistry and stream flow source of Coal Creek, a montane, headwater tributary of the Upper Colorado River. We leveraged compositional principal component analysis and end‐member mixing to evaluate how seasonal and interannual variation in subsurface moisture conditions impacts stream chemistry. Overall, three main findings emerged from this work. First, three geochemically distinct end members were identified that constrained stream flow chemistry: reach inflows, and quick and slow flow groundwater contributions. Reach inflows were impacted by historic base and precious metal mine inputs. Bedrock fractures facilitated much of the transport of quick flow groundwater and higher‐storage subsurface features (e.g., alluvial fans) facilitated the transport of slow flow groundwater. Second, the contributions of different end members to the stream changed over the summer. In early summer, stream flow was composed of all three end members, while in late summer, it was composed predominantly of reach inflows and slow flow groundwater. Finally, we observed minimal differences in proportional composition in stream chemistry across all four years, indicating seasonal variability in subsurface moisture and spatial heterogeneity in landscape and geologic features had a greater influence than interannual climate fluctuation on hydrologic connectivity and stream water chemistry. These findings indicate that mechanisms controlling solute transport (e.g., hydrologic connectivity and flow path activation) may be resilient (i.e., able to rebound after perturbations) to predicted increases in climate variability. By establishing a framework for assessing compositional stream chemistry across variable hydrologic and subsurface moisture conditions, our study offers a method to evaluate watershed biogeochemical resilience to variations in hydrometeorological conditions. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  5. Abstract Identifying and quantifying preferential flow (PF) through soil—the rapid movement of water through spatially distinct pathways in the subsurface—is vital to understanding how the hydrologic cycle responds to climate, land cover, and anthropogenic changes. In recent decades, methods have been developed that use measured soil moisture time series to identify PF. Because they allow for continuous monitoring and are relatively easy to implement, these methods have become an important tool for recognizing when, where, and under what conditions PF occurs. The methods seek to identify a pattern or quantification that indicates the occurrence of PF. Most commonly, the chosen signature is either (1) a nonsequential response to infiltrated water, in which soil moisture responses do not occur in order of shallowest to deepest, or (2) a velocity criterion, in which newly infiltrated water is detected at depth earlier than is possible by nonpreferential flow processes. Alternative signatures have also been developed that have certain advantages but are less commonly utilized. Choosing among these possible signatures requires attention to their pertinent characteristics, including susceptibility to errors, possible bias toward false negatives or false positives, reliance on subjective judgments, and possible requirements for additional types of data. We review 77 studies that have applied such methods to highlight important information for readers who want to identify PF from soil moisture data and to inform those who aim to develop new methods or improve existing ones. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  6. Volcanic provinces are among the most active but least well understood landscapes on Earth. Here, we show that the central Cascade arc, USA, exhibits systematic spatial covariation of topography and hydrology that are linked to aging volcanic bedrock, suggesting systematic controls on landscape evolution. At the Cascade crest, a locus of Quaternary volcanism, water circulates deeply through the upper 1 km of crust but transitions to shallow and dominantly horizontal flow as rocks age away from the arc front. We argue that this spatial pattern reflects a temporal state shift in the deep Critical Zone. Chemical weathering at depth, surface particulate deposition, and tectonic forcing drive landscapes away from an initial state with minimal topographic dissection, large vertical hydraulic conductivity, abundant lakes, and muted hydrographs toward a state of deep fluvial dissection, small vertical hydraulic conductivity, few lakes, and flashy hydrographs. This state shift has major implications for regional water resources. Drill hole temperature profiles imply at least 81 km 3 of active groundwater currently stored at the Cascade Range crest, with discharge variability a strong function of bedrock age. Deeply circulating groundwater also impacts volcanism, and Holocene High Cascades eruptions reflect explosive magma–water interactions that increase regional volcanic hazard potential. We propose that a Critical Zone state shift drives volcanic landscape evolution in wet climates and represents a framework for understanding interconnected solid earth dynamics and climate in these terrains. 
    more » « less
    Free, publicly-accessible full text available January 21, 2026
  7. Free, publicly-accessible full text available February 1, 2026
  8. ABSTRACT The importance of subsurface water dynamics, such as water storage and flow partitioning, is well recognised. Yet, our understanding of their drivers and links to streamflow generation has remained elusive, especially in small headwater streams that are often data‐limited but crucial for downstream water quantity and quality. Large‐scale analyses have focused on streamflow characteristics across rivers with varying drainage areas, often overlooking the subsurface water dynamics that shape streamflow behaviour. Here we ask the question:What are the climate and landscape characteristics that regulate subsurface dynamic storage, flow path partitioning, and dynamics of streamflow generation in headwater streams?To answer this question, we used streamflow data and a widely‐used hydrological model (HBV) for 15 headwater catchments across the contiguous United States. Results show that climate characteristics such as aridity and precipitation phase (snow or rain) and land attributes such as topography and soil texture are key drivers of streamflow generation dynamics. In particular, steeper slopes generally promoted more streamflow, regardless of aridity. Streams in flat, rainy sites (< 30% precipitation as snow) with finer soils exhibited flashier regimes than those in snowy sites (> 30% precipitation as snow) or sites with coarse soils and deeper flow paths. In snowy sites, less weathered, thinner soils promoted shallower flow paths such that discharge was more sensitive to changes in storage, but snow dampened streamflow flashiness overall. Results here indicate that land characteristics such as steepness and soil texture modify subsurface water storage and shallow and deep flow partitioning, ultimately regulating streamflow response to climate forcing. As climate change increases uncertainty in water availability, understanding the interacting climate and landscape features that regulate streamflow will be essential to predict hydrological shifts in headwater catchments and improve water resources management. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  9. Understanding how subsurface water storage—created and structured by the geology and geomorphology of the critical zone—governs hydrologic connectivity between landscapes and streams is essential for explaining spatial and temporal variation in stream water chemistry. Most headwater studies have focused on high‐resolution stream water chemistry at the catchment outlet, rarely examining the spatial variability among tributaries and the main channel, or how these patterns relate to the underlying geology and geomorphology. Linking upstream spatial and temporal variability with chemical dynamics at the outlet over time is even less common. We conducted weekly synoptic sampling along Lookout Creek, located within the HJ Andrews Experimental Forest Long Term Ecological Research programme. Lookout Creek is in the volcanic terrain of the western Cascades, Oregon. The catchment spans multiple geologic units (e.g., lava flows) and geomorphic features (e.g., earthflows). We measured stream chemistry along the main stem and five tributaries to assess how varying degrees of hydrologic connectivity influence solute concentrations and transport across this geologic and geomorphologic template. To identify the timing and magnitude of hydrologic connectivity between tributaries, the main stem, and the catchment outlet, we analysed spatiotemporal patterns in stream chemistry using concentration‐discharge relationships, principal component analysis, and a metric of subcatchment synchrony. We found that in previously glaciated catchments with active earthflows, solute concentrations and base‐cation‐to‐silica ratios were higher, and more solutes had a chemostatic or mobilising behaviour, indicating high subsurface storage. This variability in subsurface storage, and its influence on hydrologic connectivity, ultimately determined the degree of chemical synchrony with the catchment outlet. Our findings suggest that, under future climate scenarios with shifts in precipitation phase and timing, headwater systems with substantial subsurface storage are likely to be more chemically resilient. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  10. Understanding how diverse headwater streams contribute water downstream is critical for accurate modelling of seasonal flow dynamics in larger systems. This study investigated how headwater catchments, with diverse subsurface storage, influence downstream flows within Lookout Creek—a 62 km2, 5th‐order catchment in the rain‐snow transition zone in western Oregon, USA. We analysed one year of hydrometric and water stable isotope data collected at 10 stream locations, complemented by a decade of precipitation isotopic data. As expected, isotopic data revealed that most of the streamflow was sourced from large fall and winter storms. Generally, stream isotope ratios decrease with elevation. However, some streams had higher isotopic values than expected, reflecting the influence of isotopically heavy storms and relatively low storage. Other streams that tended to have low flow variability in response to precipitation inputs had lower isotopic values, indicating higher elevation water sources than their topographic watershed boundaries. Both hydrometric data and water isotope‐based end‐member mixing models suggest storage differences among headwater catchments influenced the seasonal water contributions from tributaries. Most notably, the contributions of Cold and Longer Creeks, which occupy less than 10% of the Lookout Creek drainage area, sustain up to 50% of the streamflow in the summer. These catchments have high storage and high groundwater contributions, as evidenced by flat flow duration curves. Finally, our data suggest that geologic variability and geomorphic complexity (presence of earthflows and landslides) can be indicators of storage that dramatically influence water movement through the critical zone, the variation in streamflow, and the response of streams to precipitation events. Heterogeneity in headwater catchment storage is key to understanding flow dynamics in mountainous regions and the response of streams to changes in climate and other disturbances. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026